
TSQL2

TSQL2: A Design Approach

September 16, 1994

A TSQL2 Commentary

The TSQL2 Language Design Committee



Title TSQL2: A Design Approach

Primary Author(s) Richard T. Snodgrass

Publication History April 1992. White Paper.

September 1994. TSQL2 Commentary.

TSQL2 Language Design Committee

Richard T. Snodgrass, Chair University of Arizona

rts@cs.arizona.edu Tucson, AZ

Ilsoo Ahn AT&T Bell Laboratories

ahn@cbnmva.att.com Columbus, OH

Gad Ariav Tel Aviv University

ariavg@ccmail.gsm.uci.edu Tel Aviv, Israel

Don Batory University of Texas

dsb@cs.utexas.edu Austin, TX

James Cli�ord New York University

jcliffor@is-4.stern.nyu.edu New York, NY

Curtis E. Dyreson University of Arizona

curtis@cs.arizona.edu Tucson, AZ

Ramez Elmasri University of Texas

elmasri@cse.uta.edu Arlington, TX

Fabio Grandi Universit�a di Bologna

fabio@deis64.cineca.it Bologna, Italy

Christian S. Jensen Aalborg University

csj@iesd.auc.dk Aalborg, Denmark

Wolfgang K�afer Daimler Benz

kaefer%fuzi.uucp@germany.eu.net Ulm, Germany

Nick Kline University of Arizona

kline@cs.arizona.edu Tucson, AZ

Krishna Kulkarni Tandem Computers

kulkarni_krishna@tandem.com Cupertino, CA

T. Y. Cli� Leung Data Base Technology Institute, IBM

cleung@vnet.ibm.com San Jose, CA

Nikos Lorentzos Agricultural University of Athens

eliop@isosun.ariadne-t.gr Athens, Greece

John F. Roddick University of South Australia

roddick@unisa.edu.au The Levels, South Australia

Arie Segev University of California

segev@csr.lbl.gov Berkeley, CA

Michael D. Soo University of Arizona

soo@cs.arizona.edu Tucson, AZ

Suryanarayana M. Sripada European Computer-Industry Research Centre

sripada@ecrc.de Munich, Germany

Copyright
c

 1994 Richard T. Snodgrass. All rights reserved.



Contents

1 Motivation 1

2 Scope 1

3 Language Design Process 2

4 Tasks 3

4.1 Terminology : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

4.2 Physical Time Line and Time-stamp Representation : : : : : : : : : : : : : : : : : : : : : 3

4.3 User-de�ned Time Domain : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

4.4 Underlying Valid-time Relational Data Model : : : : : : : : : : : : : : : : : : : : : : : : : 4

4.5 Benchmark Queries : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

4.6 Valid-time Selection and Projection : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

4.7 Aggregates : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4.8 Schema Speci�cation and Evolution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4.9 Add Transaction Time to the Data Model : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4.10 Schema Versioning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4.11 Transaction Time Selection and Projection : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4.12 Incorporate All SQL Constructs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4.13 Core Algebra : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

4.14 Add Aggregates to the Algebra : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

4.15 Add Transaction Time to the Algebra : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

5 Prerequisites 6

i



6 History 6

List of Figures

1 Task Dependencies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

ii



1 Motivation

Many within the temporal database research community perceive that the time has come to consolidate

approaches to temporal data models and calculus-based query languages, to achieve a consensus query

language and associated data model upon which future research can be based. While some two dozen

query language proposals exist, with a diversity of language and modeling constructs, common themes

keep resurfacing. However, the community is quite fragmented, with each research project being based on

a particular and di�erent set of assumptions and approaches. Often these assumptions are not germane

to the research per se, but are made simply because the research required a data model or query language

with certain characteristics, with the particular one chosen rather arbitrarily. It would be better in such

circumstances for research projects to choose the same language. Unfortunately, no existing language

has attracted a following large enough to become the one of choice.

As a result of an ARPA/NSF workshop on an infrastructure of temporal databases, a language

design committee has been formed to develop a speci�cation for a consensus extension to SQL-92 that

could form a common core for future research. This extension is termed the Temporal Structured Query

Language, or TSQL2. This commentary outlines the process by which a design for TSQL2 could be

produced by the research community.

2 Scope

The scope of the TSQL2 language design should be restricted so that a coherent design is possible. This

section lists aspects that should be included, and perhaps more importantly, those that should not be

included.

� TSQL2 is to be a relational query language.

Given that SQL is \intergalactic dataspeak" (Mike Stonebraker's term), TSQL2 should

whenever possible be consistent with standard SQL, speci�cally, SQL-92. It simply

doesn't make sense to base TSQL2 on competing (and arguably better) query languages

such as Quel, Datalog, or Daplex. While it is certainly the case that interesting research is

possible and even desirable in extending the other languages to include temporal support,

such extensions are necessarily outside of the scope of TSQL2.

� TSQL2 need not be consistent with existing standards.

In general, TSQL2 need not be consistent with SQL-92, which is now an ANSI and IOS

standard, nor with SQL3, which is currently being designed. SQL-92 contains severe


aws in its (minimal) handling of time-stamps, and SQL3 is a moving target which,

in its present state, is regarded by many as a baroque design with a bewildering array

of features. Consistency with the non-temporal aspects of existing standards for SQL,

including SQL89, SQL-92, and SQL3, is desirable if such consistency does not con
ict

with other goals.

� TSQL2 will not be another standard.

While the goal is a fully elaborated language design, there is no expectation that this

design will be made into a standard. Of course, one hopes that our results would be

acceptable to the standards bodies; at a minimum, our design should be communicated

to these bodies. However, it is important to keep in focus the objective of the TSQL2

1



design: to provide a basis for future research in temporal databases. It also must be

emphasized that TSQL2 should in no way limit or constrain future research in temporal

databases, which should be free to adopt or propose whatever linguistic constructs are

appropriate.

� TSQL2 will not be an object-oriented query language.

While temporal object-oriented query languages are being actively investigated, it would

be distracting and counter-productive at this stage to attempt to merge the rather dis-

parate approaches of object-oriented and relational languages while also addressing the

temporal processing needs. Those involved in object-oriented language design are en-

couraged to produce, in parallel with this e�ort, a temporal object-oriented extension to

SQL. At a later date, the two extensions could be merged.

� TSQL2 should be comprehensive.

TSQL2 should have constructs, extended in a natural fashion, that support all of the

functionality of SQL, including update, aggregates, and schema speci�cation and evolu-

tion. Consistent with the modi�er \temporal", TSQL2 should support both valid and

transaction time.

� The language design should include a formal semantics.

Fortunately, there is a tradition of rigor in the temporal database community. The recent

publication in TODS of a straightforward semantics of SQL will also help here.

� The language will have an associated algebra.

Such an algebra would demonstrate the existence of an executable equivalent to the

declarative constructs in the language, and would suggest implementation strategies.

� TSQL2 will be a language design.

The TSQL2 design should not attempt to de�ne storage structures, indexing structures,

access methods, fourth-generation interfaces, support for distributed systems or hetero-

geneous databases, or optimization techniques. Such aspects, while important, are more

properly the target of the research e�orts that will utilize TSQL2 as a common substrate.

� TSQL2 should re
ect areas of convergence.

The design of TSQL2 should avoid active areas of research where new results are gener-

ated frequently. Such areas include support for recursion and temporal database design.

3 Language Design Process

It is in everyone's best interest to have as many participants in the design as possible. It would be

wonderful to tap the extensive expertise available in the research community. On the other hand, the

process must balance the desirability for input with the necessity of a design by a small number of

designers, to avoid \design by committee" and all the di�culties such a design necessarily brings upon

itself. Fortunately, there is a natural limiting mechanism available. Simply put, the design should be

done by those researchers willing to expend the (considerable) e�ort to produce initial proposals and/or

to modify designs in response to comments from a much larger community of evaluators.

Language designers will be self-selected persons who are willing to write commentaries on some

speci�c aspect of the design. commentaries will include a survey of relevant research and a concrete

2



proposal for some component of TSQL2. Generally the proposal will include a formal syntax of the sug-

gested constructs, an informal semantics (in prose) of these constructs, and, ideally, a formal semantics.

These commentaries should explicitly state the rationale behind important design decisions, to enable

concrete discussion of the proposals.

Evaluators will be self-selected persons willing to comment in writing on a commentary. The

comments will be collected, and addressed either by the author(s) of the initial commentary or by other

designers willing to produce a new draft of the commentary.

The process will be iterative, and will converge when everyone is satis�ed (or exhausted). The

committee will be open to anyone who volunteers, and will consist of both language designers and

evaluators.

4 Tasks

Here a series of tasks are listed, culminating in a fully elaborated language speci�cation. Each task has

as its goal the production of and agreement on a commentary that addresses the indicated portion of

the language.

4.1 Terminology

An agreed-upon set of concepts must be the �rst order of business. Fortunately, the previously mentioned

workshop has produced a consensus glossary of temporal database concepts.

4.2 Physical Time Line and Time-stamp Representation

Current DBMS's assume a time line starting at 1 A.D. or later and consisting of days or seconds, up to

9999 A.D.. One di�culty is that there are several de�nitions of second and of day. Another di�culty

is that such a limited time line is of little use to many potential users of a temporal database, such as

geologists, arch�ologists, anthropologists, and astronomers. Such a time line doesn't even include all of

recorded history, and so doesn't fully support historians. Expanding the time line back to the creation

of the universe (approximately 15 billion years ago), raises other de�nitional questions. For example, a

solar year in the time of the dinosaurs was 400 days long. A year is di�cult to de�ne more than 6 billion

years ago, before the earth was formed.

What is needed is an application-independent identi�cation of one or more physical clocks that

cover all of past time (15 billion years) and all of the foreseeable future. This de�nition of a physical

time line should be convertible to other de�nitions that might be useful. A representation as a time-

stamp data structure is also needed, with a precise semantics, i.e., a correspondence with a particular

time of this physical clock for each valid bit pattern. Decisions need to be made about treating events

as in�nitely small points in time or as chronons of �nite but nondecomposable length, closed or open

representations for intervals, granularity, discrete versus continuous time, bounded versus unbounded

time, and linear versus branching time.

3



4.3 User-de�ned Time Domain

In conventional as well as time-oriented databases, individual attributes can be associated with a tem-

poral domain, termed user-de�ned time. Such a domain is supported by the DBMS in similar ways to

other specialized domains, such as money, e.g., conversion to and from a string representation and the

availability of comparison predicates. While SQL-92 and DB2's SQL include two time-oriented attribute

domains, datetimes and intervals, these language variants are limited to a single calendar, the Gregorian

calendar, o�er little support for anchored intervals, do not support languages other than English, and

exhibit many problems with the semantics of arithmetic and boolean expressions. A proposal is needed

that addresses these problems, while providing appropriate constructs for schema de�nition, time value

input and output, predicates, arithmetic manipulation, and temporal functions.

4.4 Underlying Valid-time Relational Data Model

Determining the correct data model underlying TSQL2 will probably be the most di�cult of all the

tasks. Unfortunately, and not coincidentally, this task is a central one, on which most of the other tasks

are predicated. To focus the design, I advocate that time be added to the data model in two separate

steps, with the �rst to add valid time and the second to later add transaction time.

A proposal is needed that confronts the controversies currently raging in the research commu-

nity, including 1NF versus :1NF, temporally grouped versus temporally ungrouped, tuple time-stamped

versus attribute value time-stamped, homogeneous versus non-homogeneous, events versus intervals, in-

terpolated versus stepwise constant data, recurrent events, and whether keys should be required.

4.5 Benchmark Queries

A basis is needed on which to compare language proposals. This task involves informally de�ning an

example schema containing several relations, populating this schema with example relation instances,

listing in English prose interesting queries on this schema, and displaying the results of these queries on

the example instances.

4.6 Valid-time Selection and Projection

Valid-time selection is the analogue of conventional selection: the identi�cation of tuples that satisfy

some speci�ed predicate, in this case a predicate on the time(s) the data elements (attribute values or

tuples) were valid. One design issue is whether the where clause in SQL should be extended, or whether

a new clause is preferred.

Valid-time projection is an analogue of conventional projection, where component(s) of tuples are

retained, in this case, components of the time(s) the data elements were valid. One fundamental question

is whether the derived intervals must be subsets of the underlying intervals. A second design issue is

whether the target list in SQL should be extended, or whether a new clause is preferred. The subject

of temporal joins, such as time intersection, time union, and temporal outer joins, also needs to be

addressed here.

4



4.7 Aggregates

Extension of the current SQL aggregates is required, along with the de�nition of new time-oriented ag-

gregates (e.g., first), of temporal analogues of aggregate variants such as unique (e.g., moving window),

and of order-dependent predicates that operate on groups of tuples.

4.8 Schema Speci�cation and Evolution

SQL has a create table statement. This will need to be extended to allow speci�cation of time-varying

relations in addition to conventional relations. Other meta-data, such as the nature of interpolation to

be imposed on continuous data represented discretely, must be included in the schema. Also, the schema

of a relation may need to be changed to indicate a conversion from a time-varying relation, or vice versa.

This will probably be a particularly easy extension to design.

4.9 Add Transaction Time to the Data Model

Since transaction time is orthogonal to valid time, the design process will be simpli�ed if these two

aspects are attacked separately. The hope is that once the impact of adding valid time to the language

has been adequately considered, the incorporation of transaction time will be easier. Some feel that

transaction time can be handled identically or almost identically to valid time; clearly if this is possible

it will simplify this task considerably.

4.10 Schema Versioning

When schema evolution and support for transaction time are both present, a database may contain

multiple versions of the schema, each in e�ect for disjoint intervals of transaction time. This aspect,

while di�cult to implement, probably has little impact on the language design.

4.11 Transaction Time Selection and Projection

At a minimum, these constructs should support rollback. A design decision is whether the valid-time

selection and projection constructs should be extended, or whether di�erent constructs are needed.

4.12 Incorporate All SQL Constructs

To arrive at a comprehensive language de�nition, the interaction between proposed language constructs

concerning time and all existing constructs, including modules, embedded SQL, views, and protection,

needs to be examined in a systematic fashion.

5



4.13 Core Algebra

This task involves the design of representations for temporal relations (the objects in the algebra) and

operators on these objects to support valid-time selection and projection. Issues including uni-sorted

versus multi-sorted, algebraic equivalences, closure, snapshot reducibility, and update semantics should

be considered.

4.14 Add Aggregates to the Algebra

Clearly the algebra should support all the aggregate variants present in the TSQL2 design.

4.15 Add Transaction Time to the Algebra

If schema versioning is to be supported in the algebra, this task must consider how algebra expressions

are to be type checked in the presence of multiple schemas active at various transaction times.

5 Prerequisites

Dependencies between the tasks result in a partial order on their completion, as shown in Figure 1. These

dependencies take the following considerations into account.

� The design of the time-stamp representation and of the user-de�ned time domain are independent

of extensions of the underlying data model to incorporate valid or transaction time.

� The constructs for valid-time selection should be consistent with those used in expressions involving

user-de�ned time.

� The constructs for valid-time selection and projection, unlike those for user-de�ned time, require a

speci�ed data model.

� While constructs for schema speci�cation do not require the operations of valid-time selection and

projection to be elaborated, the constructs for schema evolution will require new tuples to be

generated that are consistent with a modi�ed schema.

� Schema versioning is only possible if transaction time is supported.

While commentaries that address only one task are best, those that address several tasks in concert will

certainly still be welcome. Also, these dependencies are only suggestive; work can certainly proceed on

multiple tasks concurrently.

6 History

Temporal databases have been an active research topic for at least �fteen years. During this time, several

dozen temporal query languages have been proposed. In April, 1992 Richard Snodgrass circulated a white

6



paper, which was the initial version of this commentary, proposing that a temporal extension to SQL

be produced by the research community. In parallel, the temporal database community organized the

\ARPA/NSF International Workshop on an Infrastructure for Temporal Databases," which was held

in Arlington, TX, in June, 1993. Discussions at that workshop indicated that there was substantial

interest in a temporal extension to SQL-92. A general invitation was sent to the community, and about a

dozen people volunteered to develop a language speci�cation. Several people later joined the committee.

The group corresponded via electronic mail from early July, 1993, submitting, debating, and re�ning

proposals for the various portions of the language. In September, 1993, the �rst draft speci�cation,

accompanied by thirteen commentaries, was distributed to the committee. In December, 1993 a much

enlarged draft, accompanied by some twenty-four commentaries, was distributed to the committee. A

preliminary language speci�cation appeared in the March, 1994 issue of ACM SIGMOD Record, and

twenty-three commentaries were made available via anonymous FTP at FTP.cs.arizona.edu. A tutorial

of the language appeared in the September, 1994 issue of ACM SIGMOD Record, and the �nal language

speci�cation and 28 commentaries were also made available via anonymous FTP that month. The design

of the language and the writing of the commentaries followed the process shown in Figure 1; all the tasks

identi�ed in the �gure have been accomplished in the commentaries and in the language design.

Acknowledgements

The comments of many people who read a previous draft of this initiative, especially those of James

Cli�ord, Shashi Gadia, Sushil Jajodia, Christian S. Jensen, Sham Navathe, Arie Segev, and Abdullah

Tansel, are appreciated. This work was supported in part by NSF grants ISI-8902707 and ISI-9302244,

IBM contract #1124 and the AT&T Foundation.

7



'

&

$

%

'

&

$

%

-

?

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

?

?

P

P

P

P

P

P

P

P

P

P

P

P

P

Pq

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�9

�

�

�

�

�

�

�

�

�

�

�

�

�

�)

B

B

B

B

B

B

B

B

B

B

B

B

B

BN

�

�

�

�

�

�=

?

H

H

H

H

H

H

H

H

H

Hj

A

A

A

A

A

A

A

A

A

A

A

A

A

AU

?

�

�

�

�

�	

Q

Q

Q

Q

Q

Q

Qs

?

?

�

�

�

�

�

�

�=

�

�

�

�

�

�

�

�

�

�

�

�

�

�


Q

Q

Q

Q

Q

Q

Qs

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�+

?

Time To Algebra

Add Transaction

Algebra

Full Temporal

TSQL

Full

All SQL Constructs

Incorporate

To Algebra

Add Aggregates

Spec. and Evolution

Algebra

Design Core

Queries

Benchmark

Data Model

Valid-time

Time

User-De�ned

Time-stamp

Representation

Terminology

Aggregates

Schema

Versioning

Valid-Time Schema

Selection and Proj.

Transaction Time

Selection and Proj.

Temporal

Data Model

Figure 1: Task Dependencies


